Acta Crystallographica Section E

Structure Reports
 Online
 ISSN 1600-5368

Li-Ping Zhang, ${ }^{\text {a }}$ Long-Guan Zhu ${ }^{\text {a }}$ and Hong-Ping Xiao ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
H -atom completeness 86%
Disorder in solvent or counterion
R factor $=0.032$
$w R$ factor $=0.071$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ lead(II) μ_{4}-(4-sulfonatobenzoato- $\kappa^{4} O, O^{\prime}: \mathrm{O}^{\prime \prime}, O^{\prime \prime \prime}$ hydrate]

In the title polymeric compound, $\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\right]_{n} \cdot-$ $n \mathrm{H}_{2} \mathrm{O}$, the seven-coordinate $\mathrm{Pb}^{\mathrm{II}}$ atom is surrounded by one 1,10-phenanthroline (phen) and four 4-sulfonatobenzoate (sb) ligands in a hemidirected coordination geometry. Both the sulfonyl and carboxy groups of the sb ligand bridge the neighboring $\mathrm{Pb}^{\mathrm{II}}$ atoms to form a two-dimensional sheet structure.

Comment

The sulfonate group exhibits a different coordination mode compared to the carboxylate group (Zheng et al., 2003; Wang et al., 2004; Starynowicz, 2000). 4-Sulfonatobenzoate (sb), which combines sulfonate and carboxylate groups, may be used as a bridging ligand to construct novel complex architectures. A search of the Cambridge Structure Database (November 2004 update; Allen, 2002) shows that the structures of five sb metal complexes have been reported, the sulfonate group adopting a monodentate mode (Yuan et al., 2001; Fan, Xiao, Zhang \& Zhu, L.-G., 2004; Fan, Xiao, Zhang, Cai \& Zhu, 2004) or a syn-syn bridge mode (Xiong et al., 2001) in these complexes. We report here the crystal structure of the title polymeric $\mathrm{Pb}^{\mathrm{II}}$ complex, (I), which exhibits a different coordination mode for the sulfonate group from those reported previously.

The structure of a segment of (I) is presented in Fig. 1 to show the coordination geometry around the $\mathrm{Pb}^{\mathrm{II}}$ atom. Each seven-coordinate $\mathrm{Pb}^{\mathrm{II}}$ atom is surrounded by one $1,10-$ phenanthroline (phen) and four sb ligands. While the carboxylate group of the sb ligand chelates a $\mathrm{Pb}^{\mathrm{II}}$ atom, the O 2 atom of the carboxylate group coordinates to a neighboring $\mathrm{Pb}^{\text {II }}$ atom to form a centrosymmetric $\mathrm{Pb}_{2} \mathrm{O}_{2}$ four-membered ring, with a $\mathrm{Pb} \cdots \mathrm{Pb}$ separation of 4.5813 (4) \AA. The bridging

Received 29 March 2005
Accepted 7 April 2005
Online 16 April 2005

Figure 1
The structure of a segment of (I), showing the coordination geometry. Displacement ellipsoids are drawn at the 40% probability level. Uncoordinated water molecules are omitted for clarity. Symmetry codes (i): $-x, 1-y, 1-z$; (ii): $1-x, 1-y, 1-z$; (iii): $\frac{1}{2}-x,-\frac{1}{2}+y, z$.

Figure 2
A view of the two-dimensional network of (I). The uncoordinated water molecules and H atoms are omitted for clarity.
mode of the carboxylate is anti-skew, with a dihedral angle of $10.1(8)^{\circ}$ between the carboxyl group and the benzene ring. The sulfonate group of the sb ligand links two neighboring $\mathrm{Pb}^{\text {II }}$ atoms in a skew-skew bridging mode, the $\mathrm{Pb} \cdots \mathrm{Pb}$ separation being 7.1712 (4) \AA. Each sb ligand, therefore, bridges four $\mathrm{Pb}^{\mathrm{II}}$ atoms to form a two-dimensional sheet network (Fig. 2). Three kinds of metal-containing rings, $[\mathrm{Pb} \cdots \mathrm{O} \cdots \mathrm{Pb} \cdots \mathrm{O}], \quad\left[\mathrm{Pb} \cdots \mathrm{sb} \cdots \mathrm{Pb} \cdots \mathrm{SO}_{3}\right] \quad$ and $[\mathrm{Pb} \cdots \mathrm{sb} \cdots \mathrm{Pb} \cdots \mathrm{sb}]$, are observed in the sheet network. Within the $[\mathrm{Pb} \cdots \mathrm{sb} \cdots \mathrm{Pb} \cdots \mathrm{sb}]$ moiety, parallel mean planes of two sb ligands are separated from each other by a face-toface distance of 3.57 (3) Å.

The coordination geometry around the $\mathrm{Pb}^{\mathrm{II}}$ atom in (I) may be described as 'hemidirected' (Shimoni-Livny et al., 1998), a significant gap being located in the position trans to the phen ligand. In the empty direction, some short contacts are
observed, viz. $\mathrm{Pb} \cdots \mathrm{O} 6 B^{\mathrm{ii}}=3.34(2) \AA$ and $\mathrm{Pb} \cdots \mathrm{O} 3^{\mathrm{ii}}=$ 3.828 (4) \AA [symmetry code (ii): $1-x, 1-y, 1-z$]. This is similar to the situation found in $[\mathrm{Pb}(\mathrm{DOTAM})]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ $($ DOTAM $=1,4,7,10$-tetrakis(carbamoylmethyl)-1,4,7,10tetraazacyclododecane) (Hancock et al., 2004).

Experimental

A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.084 \mathrm{~g}, 0.25 \mathrm{mmol})$, KHsb $(0.061 \mathrm{~g}$, $0.25 \mathrm{mmol})$, phen $(0.046 \mathrm{~g}, 0.23 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ was placed in a 30 ml stainless steel reactor with a Teflon liner and heated at 423 K for 24 h . After cooling, colorless block-shaped crystals of (I) were obtained. Elemental and TG analyses clearly indicate that the compound contains a water molecule, with a formula of $\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$. Analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}-$ PbS: C 37.68, H 2.33, N 4.63\%; found: C 37.42, H 2.34, N 4.46\%. Weight loss in the temperature range $363-408 \mathrm{~K}$ corresponds to the release of the water molecule (calculated 2.98%, found 3.07%).

Crystal data
$\left[\mathrm{Pb}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=605.57$
Orthorhombic, Pbca
$a=9.8745$ (7) A
$b=17.3467$ (11) \AA
$c=21.7544(14) \AA$
$V=3726.3(4) \AA^{3}$
$Z=8$
$D_{x}=2.159 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\min }=0.206, T_{\max }=0.523$
21368 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.071$
$S=1.01$
4064 reflections
273 parameters
H-atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pb} 1-\mathrm{O} 1$	2.439 (3)	$\mathrm{Pb} 1-\mathrm{N} 1$	2.546 (4)
$\mathrm{Pb} 1-\mathrm{O} 2$	2.888 (3)	$\mathrm{Pb} 1-\mathrm{N} 2$	2.540 (4)
$\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {i }}$	2.715 (3)	S1-O3	1.441 (4)
$\mathrm{Pb} 1-\mathrm{O} 4^{\text {ii }}$	2.699 (4)	S1-O4	1.441 (4)
$\mathrm{Pb} 1-\mathrm{O}{ }^{\text {iii }}$	2.694 (4)	S1-O5	1.446 (4)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 2$	48.28 (10)	$\mathrm{O} 5^{\mathrm{iii}}-\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {i }}$	94.01 (11)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {i }}$	96.05 (11)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 2$	113.20 (11)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O}^{\text {ii }}$	87.35 (12)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {i }}$	77.50 (11)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 5{ }^{\text {iii }}$	151.95 (13)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 4^{\text {ii }}$	142.56 (12)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 1$	80.65 (12)	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 5^{\text {iii }}$	76.08 (12)
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 2$	78.68 (12)	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{N} 1$	65.22 (13)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 2$	70.32 (12)	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 2$	124.04 (11)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Pb} 1-\mathrm{O} 2$	82.72 (10)	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {i }}$	142.72 (11)
$\mathrm{O} 4^{\text {ii }}-\mathrm{Pb} 1-\mathrm{O} 2^{\text {i }}$	139.34 (11)	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 4^{\text {ii }}$	77.73 (12)
$\mathrm{O} 5^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 2$	158.36 (11)	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 5{ }^{\text {iii }}$	77.49 (12)
$\mathrm{O} 5^{\mathrm{iii}}-\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {ii }}$	101.74 (11)		

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, z$.

metal-organic papers

The aromatic H atoms were positioned geometrically and refined using the riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93 \AA, U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}(\mathrm{C})$]. The uncoordinated water is disordered over two sites; occupancies were initially refined and converged to 0.532 (3) and 0.468 (3), respectively, and were then fixed at 0.53 (major component) and 0.47 (minor component) in the final cycles of refinement. H atoms of the disordered water molecule were not located. The highest peak in the final difference Fourier map lies $0.92 \AA$ from atom Pb .

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (50073019).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1833-m1835.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1970-m1972.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hancock, R. D., Reibenspies, J. H. \& Maumela, H. (2004). Inorg. Chem. 43, 2981-2987.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Shimoni-Livny, L., Glusker, J. P. \& Bock, C. W. (1998). Inorg. Chem. 37, 18531867.

Starynowicz, P. (2000). J. Alloys Comput. 305, 117-120.
Wang, W. G., Zhang, J., Song, L. J. \& Ju, Z. F. (2004). Inorg. Chem. Commun. 7, 858-860.
Xiong, R. G., Zhang, J., Chen, Z. F., You, X. Z., Che, C. M. \& Fun, H. K. (2001). J. Chem. Soc. Dalton Trans. pp. 780-782.

Yuan, R. X., Xiong, R. G., Xie, Y. L., You, X. Z., Peng, S. M. \& Lee, G. H. (2001). Inorg. Chem. Commun. 4, 384-387.

Zheng, S. L., Zheng, J. P., Chen, X. M. \& Ng, S. W. (2003). J. Solid State Chem. 172, 45-52.

